Bridge Crane System
ITERATIVE DYNAMIC PROGRAMMING, REIN LUUS
12.4.1 Example 1: Bridge crane system
CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics
Contents
Problem description
Find u over t in [0; tF ] to minimize
subject to:
The initial condition are:
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t toms tf p = tomPhase('p', t, 0, tf, 50); setPhase(p); tomStates x1 x2 x3 x4 tomControls u % Initial guess % Note: The guess for tf must appear in the list before expression involving t. x0 = {tf == 8, ... collocate(u==1-2*t/tf)}; % Box constraints cbox = {0.1 <= tf <= 100 -1 <= collocate(u) <= 1}; % Boundary constraints cbnd = {initial({x1 == 0; x2 == 0 x3 == 0; x4 == 0}) final({x1 == 15; x2 == 0 x3 == 0; x4 == 0})}; % ODEs and path constraints ceq = collocate({ dot(x1) == x2 dot(x2) == u dot(x3) == x4 dot(x4) == -0.98*x3+0.1*u}); % Objective objective = tf;
Solve the problem
options = struct;
options.name = 'Bridge Crane System';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
x1 = subs(collocate(x1),solution);
x2 = subs(collocate(x2),solution);
x3 = subs(collocate(x3),solution);
x4 = subs(collocate(x4),solution);
u = subs(collocate(u),solution);
Problem type appears to be: lpcon ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: --- 1: Bridge Crane System f_k 8.578933610367174700 sum(|constr|) 0.000000187961517282 f(x_k) + sum(|constr|) 8.578933798328691300 f(x_0) 8.000000000000000000 Solver: snopt. EXIT=0. INFORM=1. SNOPT 7.2-5 NLP code Optimality conditions satisfied FuncEv 1 ConstrEv 37 ConJacEv 37 Iter 19 MinorIter 497 CPU time: 0.421875 sec. Elapsed time: 0.422000 sec.
Plot result
subplot(2,1,1) plot(t,x1,'*-',t,x2,'*-',t,x3,'*-',t,x4,'*-'); legend('x1','x2','x3','x4'); title('Bridge Crane System state variables'); subplot(2,1,2) plot(t,u,'+-'); legend('u'); title('Bridge Crane System control');