Continuous State Constraint Problem
Problem 2: Miser3 manual
Contents
Problem description
Find u(t) over t in [0; 1 ] to minimize
subject to:
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t p = tomPhase('p', t, 0, 1, 50); setPhase(p); tomStates x1 x2 tomControls u % Initial guess x0 = {icollocate({x1 == 0; x2 == -1}) collocate(u==0)}; % Box constraints cbox = {-10 <= icollocate(x1) <= 10 -10 <= icollocate(x2) <= 10 -20 <= collocate(u) <= 20}; % Boundary constraints cbnd = initial({x1 == 0; x2 == -1}); % ODEs and path constraints ceq = collocate({ dot(x1) == x2 dot(x2) == -x2+u 8*(t-0.5).^2-0.5-x2 >= 0 % Path constr. }); % Objective objective = integrate(x1.^2 + x2.^2 + 0.005*u.^2);
Solve the problem
options = struct;
options.name = 'Cont State Constraint';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
x1 = subs(collocate(x1),solution);
x2 = subs(collocate(x2),solution);
u = subs(collocate(u),solution);
Problem type appears to be: qp ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: 1: Cont State Constraint f_k 0.169824305998486440 sum(|constr|) 0.000000000079816838 f(x_k) + sum(|constr|) 0.169824306078303290 f(x_0) 0.000000000000000000 Solver: CPLEX. EXIT=0. INFORM=1. CPLEX Barrier QP solver Optimal solution found FuncEv 10 GradEv 10 ConstrEv 10 Iter 10 CPU time: 0.015625 sec. Elapsed time: 0.015000 sec.
Plot result
subplot(3,1,1) plot(t,x1,'*-',t,x2,'*-'); legend('x1','x2'); title('Cont State Constraint state variables'); subplot(3,1,2) plot(t,u,'+-'); legend('u'); title('Cont State Constraint control'); subplot(3,1,3) ieq = 8*(t-0.5).^2-0.5-x2; plot(t,ieq,'+-'); axis([0 1 0 5]); legend('path'); title('Cont State Constraint path constraint');