Dielectrophoresis Particle Control
Time-Optimal Control of a Particle in a Dielectrophoretic System, Dong Eui Chang, Nicolas Petit, and Pierre Rouchon
Contents
Problem Description
Find u over t in [0; tF ] to minimize:

subject to:





![$$ [x_0 \ y_0] = [1 \ 0]$$](xdielectrophoresisProblem_eq48869.png)

% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t toms tf p = tomPhase('p', t, 0, tf, 60); setPhase(p); tomStates x y tomControls u % Initial guess x0 = {tf == 10 icollocate({ x == 1+1*t/tf y == t/tf }) collocate(u == 1)}; % Box constraints cbox = { sqrt(eps) <= icollocate(x) sqrt(eps) <= collocate(y) 1 <= tf <= 100 -1 <= collocate(u) <= 1}; % Boundary constraints cbnd = {initial({x == 1; y == 0}) final({x == 2})}; % ODEs and path constraints ceq = collocate({ dot(x) == y.*u-3/4*u.^2 dot(y) == -y+u}); % Objective objective = tf;
Solve the problem
options = struct;
options.name = 'Dielectrophoresis Control';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
x = subs(collocate(x),solution);
y = subs(collocate(y),solution);
u = subs(collocate(u),solution);
Problem type appears to be: lpcon
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05
=====================================================================================
Problem: --- 1: Dielectrophoresis Control f_k 7.811292812705188400
sum(|constr|) 0.000001346838599033
f(x_k) + sum(|constr|) 7.811294159543787300
f(x_0) 10.000000000000000000
Solver: snopt. EXIT=0. INFORM=1.
SNOPT 7.2-5 NLP code
Optimality conditions satisfied
FuncEv 1 ConstrEv 26 ConJacEv 26 Iter 25 MinorIter 227
CPU time: 0.250000 sec. Elapsed time: 0.250000 sec.
Plot result
figure(1); plot(t,x,'*-',t,y,'*-',t,u,'*-'); legend('x','y','u');