Disturbance Control
Optimal On-Line Control and Classical Regulation Problem, Faina M. Kirillova, Institute of Mathematics National Academy of Sciences of Belarus.
Algorithm of Acting Optimal Controller
Contents
Problem Description
Find u over t in [0; 25 ] to minimize:
subject to:
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t p = tomPhase('p', t, 0, 25, 80); setPhase(p); tomStates x1 x2 x3 x4 tomControls u % Box constraints cbox = {0 <= collocate(u) <= 1}; % Boundary constraints cbnd = {initial({x1 == 0; x2 == 0 x3 == 2; x4 == 1}) final({x1 == 0; x2 == 0 x3 == 0; x4 == 0})}; % ODEs and path constraints ceq = collocate({ dot(x1) == x3 dot(x2) == x4 dot(x3) == -x1+x2+u dot(x4) == 0.1*x1-1.02*x2+0.3*sin(4*t).*(t<9.75)}); % Objective objective = 0;
Solve the problem
options = struct;
options.name = 'Disturbance Control';
solution = ezsolve(objective, {cbox, cbnd, ceq}, [], options);
t = subs(collocate(t),solution);
x1 = subs(collocate(x1),solution);
x2 = subs(collocate(x2),solution);
x3 = subs(collocate(x3),solution);
x4 = subs(collocate(x4),solution);
u = subs(collocate(u),solution);
Problem type appears to be: lp ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: --- 1: Disturbance Control f_k 0.000000000000000000 sum(|constr|) 0.000000000046160833 f(x_k) + sum(|constr|) 0.000000000046160833 f(x_0) 0.000000000000000000 Solver: CPLEX. EXIT=0. INFORM=1. CPLEX Dual Simplex LP solver Optimal solution found FuncEv 336 Iter 336 CPU time: 0.171875 sec. Elapsed time: 0.172000 sec.
Plot result
figure(1); subplot(2,2,1) plot(x1,x3,'-'); title('Disturbance control'); legend('x1 vs x3'); subplot(2,2,2) plot(x2,x4,'-'); legend('x2 vs x4'); subplot(2,2,3) plot(t,u,'-'); legend('u'); subplot(2,2,4) plot(t,0.3*sin(4*t).*(t<9.75),'-'); legend('disturbance');