Isoperimetric Constraint Problem
Contents
Problem Formulation
Find u over t in [0; 1 ] to minimize
subject to:
The initial condition are:
% Copyright (c) 2009-2009 by Tomlab Optimization Inc.
Problem setup
toms t p = tomPhase('p', t, 0, 1, 30); setPhase(p); tomStates x tomControls u % Initial guess x0 = {icollocate(x == 0) collocate(u == 0)}; % Box constraints cbox = {icollocate(-10 <= x <= 10) collocate(-4 <= u <= 4)}; % Boundary constraints cbnd = {initial(x == 1) final(x == 0)}; % ODEs and path constraints ceq = collocate(dot(x) == -sin(x)+u); % Integral constraint cint = {integrate(u^2) == 10}; % Objective objective = integrate(x);
Solve the problem
options = struct;
options.name = 'Isoperimetric';
solution = ezsolve(objective, {cbox, cbnd, ceq, cint}, x0, options);
t = subs(collocate(t),solution);
x = subs(collocate(x),solution);
u = subs(collocate(u),solution);
Problem type appears to be: lpcon Starting numeric solver ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: --- 1: Isoperimetric f_k -0.375495523108184290 sum(|constr|) 0.000000031769200901 f(x_k) + sum(|constr|) -0.375495491338983410 f(x_0) 0.000000000000000000 Solver: snopt. EXIT=0. INFORM=1. SNOPT 7.2-5 NLP code Optimality conditions satisfied FuncEv 1 ConstrEv 112 ConJacEv 112 Iter 53 MinorIter 216 CPU time: 0.187500 sec. Elapsed time: 0.188000 sec.
Plot result
subplot(2,1,1) plot(t,x,'*-'); legend('x'); title('Isoperimetric state variable'); subplot(2,1,2) plot(t,u,'+-'); legend('u'); title('Isoperimetric control');