Linear Tangent Steering Problem
Benchmarking Optimization Software with COPS Elizabeth D. Dolan and Jorge J. More ARGONNE NATIONAL LABORATORY
Contents
Problem Formulation
Find u(t) over t in [0; tF ] to minimize
subject to:
The following transformation gives a new formulation:
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t toms tf p = tomPhase('p', t, 0, tf, 30); setPhase(p); tomStates x1 x2 x3 x4 tomControls u % Initial guess x0 = {tf == 1 icollocate({ x1 == 12*t/tf x2 == 45*t/tf x3 == 5*t/tf x4 == 0})}; % Box constraints cbox = {sqrt(eps) <= tf -pi/2 <= collocate(u) <= pi/2}; % Boundary constraints cbnd = {initial({x1 == 0; x2 == 0; x3 == 0; x4 == 0}) final({x2 == 45; x3 == 5; x4 == 0})}; % ODEs and path constraints a = 100; ceq = collocate({dot(x1) == x2 dot(x2) == a*cos(u) dot(x3) == x4 dot(x4) == a*sin(u)}); % Objective objective = tf;
Solve the problem
options = struct; options.name = 'Linear Tangent Steering'; options.solver = 'knitro'; solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options); t = subs(collocate(t),solution); x1 = subs(collocate(x1),solution); x2 = subs(collocate(x2),solution); x3 = subs(collocate(x3),solution); x4 = subs(collocate(x4),solution); u = subs(collocate(u),solution);
Problem type appears to be: lpcon ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: --- 1: Linear Tangent Steering f_k 0.554570878334224250 sum(|constr|) 0.000000008174906782 f(x_k) + sum(|constr|) 0.554570886509131000 f(x_0) 1.000000000000000000 Solver: KNITRO. EXIT=0. INFORM=0. Default NLP KNITRO Locally optimal solution found FuncEv 9 GradEv 7 HessEv 7 ConstrEv 8 ConJacEv 7 ConHessEv 6 Iter 6 MinorIter 6 CPU time: 0.218750 sec. Elapsed time: 0.110000 sec.
Plot result
subplot(2,1,1) plot(t,x1,'*-',t,x2,'*-',t,x3,'*-',t,x4,'*-'); legend('x1','x2','x3','x4'); title('Linear Tangent Steering state variables'); subplot(2,1,2) plot(t,u,'+-'); legend('u'); title('Linear Tangent Steering control');
