Linear Pendulum
Viscocity Solutions of Hamilton-Jacobi Equations and Optimal Control Problems. Alberto Bressan, S.I.S.S.A, Trieste, Italy.
A linear pendulum problem controlled by an external force.
Contents
Problem Description
Find u over t in [0; 20 ] to maximize:

subject to:


![$$ x(t_0) = [0 \ 0] $$](xlinearPendulum_eq01247.png)

% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t tf = 20; p = tomPhase('p', t, 0, tf, 60); setPhase(p); tomStates x1 x2 tomControls u % Initial guess x0 = {icollocate({x1 == 0; x2 == 0}) collocate(u == 0)}; % Box constraints and bounds cb = {-1 <= collocate(u) <= 1 initial(x1 == 0) initial(x2 == 0)}; % ODEs and path constraints ceq = collocate({dot(x1) == x2 dot(x2) == u-x1}); % Objective objective = -final(x1);
Solve the problem
options = struct;
options.name = 'Linear Pendulum';
solution = ezsolve(objective, {cb, ceq}, x0, options);
t = subs(collocate(t),solution);
x1 = subs(collocate(x1),solution);
x2 = subs(collocate(x2),solution);
u = subs(collocate(u),solution);
Problem type appears to be: lp
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05
=====================================================================================
Problem: --- 1: Linear Pendulum f_k -12.612222977985938000
sum(|constr|) 0.000000000003687556
f(x_k) + sum(|constr|) -12.612222977982251000
f(x_0) 0.000000000000000000
Solver: CPLEX. EXIT=0. INFORM=1.
CPLEX Dual Simplex LP solver
Optimal solution found
FuncEv 206 Iter 206
CPU time: 0.046875 sec. Elapsed time: 0.047000 sec.
Plot result
subplot(3,1,1) plot(t,x1,'*-',t,x2,'*-'); legend('x1','x2'); title('Linear Pendulum state variables'); subplot(3,1,2) plot(t,u,'+-'); legend('u'); title('Linear Pendulum control'); subplot(3,1,3) plot(t,sign(sin(tf-t)),'*-'); legend('Known u'); title('Linear Pendulum known solution');