Linear Problem with Bang Bang Control
Problem 5a: Miser3 manual
Contents
Problem description
Find u over t in [0; 1 ] to minimize
subject to:
% Copyright (c) 2007-2010 by Tomlab Optimization Inc.
Problem setup
toms t p = tomPhase('p', t, 0, 1, 30); setPhase(p); tomStates x1 x2 tomControls -integer u1 u2 % Initial guess x0 = {icollocate({x1 == 1; x2 == 0}) collocate({u1 == 0; u2 == 0})}; % Box constraints cbox = {-10 <= icollocate(x1) <= 10 -10 <= icollocate(x2) <= 10 -10 <= collocate(u1) <= 10 -10 <= collocate(u2) <= 10}; % Boundary constraints cbnd = initial({x1 == 1; x2 == 0}); % ODEs and path constraints ceq = collocate({dot(x1) == u2 dot(x2) == -x1+u1}); % Objective objective = integrate(-6*x1-12*x2+3*u1+u2);
Solve the problem
options = struct; options.name = 'Linear Problem Bang'; options.solver = 'knitro'; solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options); t = subs(collocate(t),solution); x1 = subs(collocate(x1),solution); x2 = subs(collocate(x2),solution); u1 = subs(collocate(u1),solution); u2 = subs(collocate(u2),solution);
Problem type appears to be: mip Starting numeric solver ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2011-02-05 ===================================================================================== Problem: --- 1: Linear Problem Bang f_k -41.377652164326207000 sum(|constr|) 0.000000200108555051 f(x_k) + sum(|constr|) -41.377651964217655000 f(x_0) -5.999999999999999100 Solver: KNITRO. EXIT=0. INFORM=0. Default MINLP KNITRO Locally optimal solution found FuncEv 30 GradEv 27 HessEv 19 CPU time: 0.109375 sec. Elapsed time: 0.109000 sec.
Plot result
subplot(2,1,1) plot(t,x1,'*-',t,x2,'*-'); legend('x1','x2'); title('Linear Problem Bang state variables'); subplot(2,1,2) plot(t,u1,'+-',t,u2,'+-'); legend('u1','u2'); title('Linear Problem Bang control');