LQR Problem
Problem: LQR: RIOTS 95 Manual
Contents
Problem Description
Find u(t) over t in [0; 1 ] to minimize
subject to:
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t p = tomPhase('p', t, 0, 1, 20); setPhase(p); tomStates x tomControls u % Initial guess x0 = icollocate(x == 1-t); % ODEs and constraints ceq = {collocate(dot(x) == 0.5*x+u) initial(x == 1)}; % Objective objective = integrate(0.625*x.^2+0.5*x.*u+0.5*u.^2);
Solve the problem
options = struct;
options.name = 'LQR Problem';
solution = ezsolve(objective, ceq, x0, options);
t = subs(collocate(t),solution);
x = subs(collocate(x),solution);
u = subs(collocate(u),solution);
Problem type appears to be: qp ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: 1: LQR Problem f_k 0.380797077977481140 sum(|constr|) 0.000000000041289582 f(x_k) + sum(|constr|) 0.380797078018770720 f(x_0) 0.000000000000000000 Solver: CPLEX. EXIT=0. INFORM=1. CPLEX Barrier QP solver Optimal solution found FuncEv 3 GradEv 3 ConstrEv 3 Iter 3 CPU time: 0.015625 sec. Elapsed time: 0.015000 sec.
Plot result
subplot(2,1,1) plot(t,x,'*-'); legend('x'); title('LQR Problem state variable'); subplot(2,1,2) plot(t,u,'+-'); legend('u'); title('LQR Problem control');