Missile Intercept
Egwald Mathematics: Optimal Control, Intercept Missile, Elmer G. Wiens
Contents
Problem Description
Find scalar w over t in [0; tF ] to minimize:
subject to:
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t tf w p = tomPhase('p', t, 0, tf, 10); setPhase(p); tomStates x1 x2 x3 x4 % Initial guess x0 = {tf == 10; w == 0.2}; % Box constraints cbox = {1 <= tf <= 1e4 0 <= w <= pi/4}; % Boundary constraints cbnd = {initial({x1 == 0; x2 == 0 x3 == 0; x4 == 0}) final({x1 == 4+1.5*tf; x2 == 1})}; % ODEs and path constraints ceq = collocate({dot(x1) == x3; dot(x2) == x4 dot(x3) == cos(w); dot(x4) == sin(w)}); % Objective objective = 0;
Solve the problem
options = struct;
options.name = 'Missile Intercept';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
x1 = subs(collocate(x1),solution);
x2 = subs(collocate(x2),solution);
w = subs(w,solution);
tf = subs(tf,solution);
Problem type appears to be: lpcon ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: --- 1: Missile Intercept f_k 0.000000000000000000 sum(|constr|) 0.000000010884905581 f(x_k) + sum(|constr|) 0.000000010884905581 f(x_0) 0.000000000000000000 Solver: snopt. EXIT=0. INFORM=1. SNOPT 7.2-5 NLP code Optimality conditions satisfied FuncEv 1 ConstrEv 13 ConJacEv 13 Iter 10 MinorIter 44 CPU time: 0.031250 sec. Elapsed time: 0.031000 sec.
Plot result
figure(1); plot(x1,x2,'*-'); hold on plot(4+1.5*t,ones(length(t)),'-*r'); legend('x1 vs x2','Missile path'); title(sprintf('Missile Intercept, tF=%g, w=%g',tf,w)); ylim([0 1.1]);
