Nagurka Problem
ITERATIVE DYNAMIC PROGRAMMING, REIN LUUS
6.4 Further example
CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics
n'th-order linear time-invariant system.
Contents
Problem description
Find u over t in [0; 1 ] to minimize
subject to:
A = [0 1 0 ... 0 0 0 1 ... 0 ... ... ... 0 0 0 ... 1 1 -2 3 ... (-1)^(n+1)*n]
The initial condition are:
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t n = 6; tF = 1; p = tomPhase('p', t, 0, tF, 25); setPhase(p); x = tomState('x', n, 1); u = tomState('u', n, 1); vec = (1:n); A = [sparse(n-1,1), speye(n-1); ... sparse(vec.*(-1).^(vec+1))]; % Initial guess guess = icollocate(x == vec'); % Initial conditions cinit = (initial(x) == vec'); % ODEs and path constraints ceq = collocate(dot(x) == A*x+u); % Objective objective = 10*final(x(1))^2 + integrate(x'*x + u'*u);
Solve the problem
options = struct;
options.name = 'Nagurka Problem';
solution = ezsolve(objective, {ceq, cinit}, guess, options);
t = subs(collocate(t),solution);
x = subs(collocate(x),solution);
u = subs(collocate(u),solution);
Problem type appears to be: qpcon ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: --- 1: Nagurka Problem f_k 109.074347752044370000 sum(|constr|) 0.000000000014092963 f(x_k) + sum(|constr|) 109.074347752058470000 f(x_0) 100.999999999999290000 Solver: snopt. EXIT=0. INFORM=1. SNOPT 7.2-5 NLP code Optimality conditions satisfied FuncEv 1 ConstrEv 30 ConJacEv 30 Iter 29 MinorIter 288 CPU time: 0.796875 sec. Elapsed time: 0.829000 sec.
Plot result
subplot(2,1,1) x1 = x(:,1); plot(t,x1,'*-'); legend('x1'); title('Nagurka Problem - First state variable'); subplot(2,1,2) u1 = u(:,1); plot(t,u1,'+-'); legend('u1'); title('Nagurka Problem - First control variable'); figure(2) surf(t, 1:n, x') xlabel('t'); ylabel('i'); zlabel('x'); title('Nagurka Problem - All state variables'); figure(3) surf(t, 1:n, u') xlabel('t'); ylabel('i'); zlabel('u'); title('Nagurka Problem - All control variables');


