Parallel Reactions in Tubular Reactor
Problem 4: DYNOPT User's Guide version 4.1.0
Batch reactor with reactions: A -> B and A -> C.
M. Cizniar, M. Fikar, M. A. Latifi, MATLAB Dynamic Optimisation Code DYNOPT. User's Guide, Technical Report, KIRP FCHPT STU Bratislava, Slovak Republic, 2006.
Contents
Problem description
Find T over t in [0; 1 ] to maximize
subject to:
where
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t p = tomPhase('p', t, 0, 1, 30); setPhase(p); tomStates x1 x2 tomControls u % Initial guess x0 = {icollocate({x1 == 1; x2 == 0}) collocate(u == 5*t)}; % Box constraints cbox = {0 <= collocate(u) <= 5}; % Boundary constraints cbnd = initial({x1 == 1; x2 == 0}); % ODEs and path constraints ceq = collocate({ dot(x1) == -(u+0.5*u.^2).*x1 dot(x2) == u.*x1}); % Objective objective = -final(x2);
Solve the problem
options = struct;
options.name = 'Parallel Reactions';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
x1 = subs(collocate(x1),solution);
x2 = subs(collocate(x2),solution);
u = subs(collocate(u),solution);
Problem type appears to be: lpcon ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: --- 1: Parallel Reactions f_k -0.573540787113989150 sum(|constr|) 0.000000228705850258 f(x_k) + sum(|constr|) -0.573540558408138890 f(x_0) 0.000000000000000000 Solver: snopt. EXIT=0. INFORM=1. SNOPT 7.2-5 NLP code Optimality conditions satisfied FuncEv 1 ConstrEv 35 ConJacEv 35 Iter 34 MinorIter 100 CPU time: 0.109375 sec. Elapsed time: 0.109000 sec.
Plot result
subplot(2,1,1) plot(t,x1,'*-',t,x2,'*-'); legend('x1','x2'); title('Parallel Reactions state variables'); subplot(2,1,2) plot(t,u,'+-'); legend('u'); title('Parallel Reactions control');