Path Tracking Robot
User's Guide for DIRCOL
2.7 Optimal path tracking for a simple robot. A robot with two rotational joints and simplified equations of motion has to move along a prescribed path with constant velocity.
Contents
Problem Formulation
Find u over t in [0; 2 ] to minimize
subject to:
A transformation gives:
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t p = tomPhase('p', t, 0, 2, 100, [], 'fem1s'); % Use splines with FEM constraints %p = tomPhase('p', t, 0, 2, 100, [], 'fem1'); % Use linear finite elements %p = tomPhase('p', t, 0, 2, 100); % Use Gauss point collocation setPhase(p); tomStates x1 x2 x3 x4 tomControls u1 u2 % Box constraints cbox = { -10 <= collocate(u1) <= 10 -10 <= collocate(u2) <= 10}; % Boundary constraints cbnd = {initial({x1 == 0; x2 == 0 x3 == 0.5; x4 == 0}) final({x1 == 0.5; x2 == 0.5 x3 == 0; x4 == 0.5})}; % ODEs and path constraints w1 = 100; w2 = 100; w3 = 500; w4 = 500; err1 = w1*(x1-t/2.*(t<1)-1/2*(t>=1)).^2; err2 = w2*(x2-(t-1)/2.*(t>=1)).^2; err3 = w3*(x3-1/2*(t<1)).^2; err4 = w4*(x4-1/2*(t>=1)).^2; toterr = integrate(err1+err2+err3+err4); ceq = collocate({ dot(x1) == x3 dot(x2) == x4 dot(x3) == u1 dot(x4) == u2}); % Objective objective = toterr;
Solve the problem
options = struct;
options.name = 'Path Tracking Robot';
solution = ezsolve(objective, {cbox, cbnd, ceq}, [], options);
t = subs(icollocate(t),solution);
x1 = subs(icollocate(x1),solution);
x2 = subs(icollocate(x2),solution);
x3 = subs(icollocate(x3),solution);
x4 = subs(icollocate(x4),solution);
u1 = subs(icollocate(u1),solution);
u2 = subs(icollocate(u2),solution);
Problem type appears to be: qp ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: 1: Path Tracking Robot f_k 2.062315025192788200 sum(|constr|) 0.000000049275694701 f(x_k) + sum(|constr|) 2.062315074468482800 f(x_0) 0.000000000000000000 Solver: CPLEX. EXIT=0. INFORM=1. CPLEX Barrier QP solver Optimal solution found FuncEv 10 GradEv 10 ConstrEv 10 Iter 10 CPU time: 0.250000 sec. Elapsed time: 0.282000 sec.
Plot result
subplot(2,1,1); plot(t,x1,'*-',t,x2,'*-',t,x3,'*-',t,x4,'*-'); legend('x1','x2','x3','x4'); title('Path Tracking Robot state variables'); subplot(2,1,2); plot(t,u1,'*-',t,u2,'*-'); legend('u1','u2'); title('Path Tracking Robot control variables');
