Path Tracking Robot (Two-Phase)
User's Guide for DIRCOL
2.7 Optimal path tracking for a simple robot. A robot with two rotational joints and simplified equations of motion has to move along a prescribed path with constant velocity.
Contents
Problem Formulation
Find u over t in [0; 2 ] to minimize
subject to:
A transformation gives:
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
tF = 2; toms t1 p1 = tomPhase('p1', t1, 0, tF/2, 25); toms t2 p2 = tomPhase('p2', t2, tF/2, tF/2, 25); setPhase(p1); tomStates x1p1 x2p1 x3p1 x4p1 tomControls u1p1 u2p1 % Box constraints cbox1 = {-10 <= collocate(u1p1) <= 10 -10 <= collocate(u2p1) <= 10}; % Boundary constraints w1 = 100; w2 = 100; w3 = 500; w4 = 500; err1p1 = w1*(x1p1-t1/2).^2; err2p1 = w2*(x2p1).^2; err3p1 = w3*(x3p1-1/2).^2; err4p1 = w4*(x4p1).^2; cbnd1 = initial({x1p1 == 0; x2p1 == 0 x3p1 == 0.5; x4p1 == 0}); % ODEs and path constraints ceq1 = collocate({dot(x1p1) == x3p1 dot(x2p1) == x4p1; dot(x3p1) == u1p1 dot(x4p1) == u2p1}); % Objective objective1 = integrate(err1p1+err2p1+err3p1+err4p1); % Phase 2 setPhase(p2); tomStates x1p2 x2p2 x3p2 x4p2 tomControls u1p2 u2p2 % Box constraints cbox2 = {-10 <= collocate(u1p2) <= 10 -10 <= collocate(u2p2) <= 10}; % Boundary constraints err1p2 = w1*(x1p2-1/2).^2; err2p2 = w2*(x2p2-(t2-1)/2).^2; err3p2 = w3*(x3p2).^2; err4p2 = w4*(x4p2-1/2).^2; cbnd2 = final({x1p2 == 0.5 x2p2 == 0.5 x3p2 == 0 x4p2 == 0.5}); % ODEs and path constraints ceq2 = collocate({ dot(x1p2) == x3p2 dot(x2p2) == x4p2 dot(x3p2) == u1p2 dot(x4p2) == u2p2}); % Objective objective2 = integrate(err1p2+err2p2+err3p2+err4p2); % Objective objective = objective1 + objective2; % Link phase link = {final(p1,x1p1) == initial(p2,x1p2) final(p1,x2p1) == initial(p2,x2p2) final(p1,x3p1) == initial(p2,x3p2) final(p1,x4p1) == initial(p2,x4p2)};
Solve the problem
options = struct; options.name = 'Path Tracking Robot (Two-Phase)'; options.solver = 'sqopt7'; constr = {cbox1, cbnd1, ceq1, cbox2, cbnd2, ceq2, link}; solution = ezsolve(objective, constr, [], options); t = subs(collocate(p1,t1),solution); t = [t;subs(collocate(p2,t2),solution)]; x1 = subs(collocate(p1,x1p1),solution); x1 = [x1;subs(collocate(p2,x1p2),solution)]; x2 = subs(collocate(p1,x2p1),solution); x2 = [x2;subs(collocate(p2,x2p2),solution)]; x3 = subs(collocate(p1,x3p1),solution); x3 = [x3;subs(collocate(p2,x3p2),solution)]; x4 = subs(collocate(p1,x4p1),solution); x4 = [x4;subs(collocate(p2,x4p2),solution)]; u1 = subs(collocate(p1,u1p1),solution); u1 = [u1;subs(collocate(p2,u1p2),solution)]; u2 = subs(collocate(p1,u2p1),solution); u2 = [u2;subs(collocate(p2,u2p2),solution)];
Problem type appears to be: qp ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: 1: Path Tracking Robot (Two-Phase) f_k 1.049952991377210800 sum(|constr|) 0.000000009563757529 f(x_k) + sum(|constr|) 1.049953000940968300 f(x_0) 0.000000000000000000 Solver: SQOPT. EXIT=0. INFORM=1. SQOPT 7.2-5 QP solver Optimality conditions satisfied Iter 294 CPU time: 0.046875 sec. Elapsed time: 0.047000 sec.
Plot result
subplot(2,1,1); plot(t,x1,'*-',t,x2,'*-',t,x3,'*-',t,x4,'*-'); legend('x1','x2','x3','x4'); title('Path Tracking Robot state variables'); subplot(2,1,2); plot(t,u1,'*-',t,u2,'*-'); legend('u1','u2'); title('Path Tracking Robot control variables');
