Pendulum Gravity Estimation
User's Guide for DIRCOL
Problem 2.5 Pendulum
Contents
Problem Formulation
Find u over t in [0; 2 ] to minimize

subject to:





![$$ [x_0 \ y_0 \ u_0 \ v_0] = [0.4 \ -0.3 \ 0 \ 0] $$](xpendulumGravitytest_eq55447.png)
![$$ [x_{f_{meas}} \ y_{f_{meas}}] = [-0.231625 \ -0.443109] $$](xpendulumGravitytest_eq19559.png)


% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t g % Initial guess gopt = 20; xopt = 0.4-(0.4+0.231625)*t/2; yopt = -0.3-(-0.3+0.443109)*t/2; uopt = 0; vopt = 0; lambdaopt = -5; for n=[20 51]
p = tomPhase('p', t, 0, 2, n); setPhase(p); tomStates x y u v tomControls lambda % Initial guess x0 = {g == gopt icollocate({ x == xopt y == yopt u == uopt v == vopt}) collocate(lambda == lambdaopt)}; % Box constraints cbox = {1 <= g <= 100}; % Boundary constraints cbnd = initial({x == 0.4; y == -0.3 u == 0; v == 0}); L = 0.5; m = 0.3; xmeas = -0.231625; ymeas = -0.443109; % ODEs and path constraints ceq = collocate({ dot(x) == u dot(y) == v dot(u) == lambda.*x/m dot(v) == lambda.*y/m-g x.^2 + y.^2 - L^2 == 0}); % Objective objective = 1/2*((final(x)-xmeas)^2+(final(y)-ymeas)^2);
Solve the problem
options = struct;
options.name = 'Pendulum Gravity';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
gopt = subs(g, solution);
xopt = subs(x, solution);
yopt = subs(y, solution);
uopt = subs(u, solution);
vopt = subs(v, solution);
lambdaopt = subs(lambda, solution);
Problem type appears to be: qpcon
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05
=====================================================================================
Problem: --- 1: Pendulum Gravity f_k 0.000000017178910877
sum(|constr|) 0.000000782774920603
f(x_k) + sum(|constr|) 0.000000799953831480
f(x_0) -0.124997863253000000
Solver: snopt. EXIT=0. INFORM=1.
SNOPT 7.2-5 NLP code
Optimality conditions satisfied
FuncEv 1 ConstrEv 110 ConJacEv 110 Iter 45 MinorIter 91
CPU time: 0.250000 sec. Elapsed time: 0.250000 sec.
Problem type appears to be: qpcon
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05
=====================================================================================
Problem: --- 1: Pendulum Gravity f_k 0.000000000014570095
sum(|constr|) 0.000000123532555605
f(x_k) + sum(|constr|) 0.000000123547125700
f(x_0) -0.124997846074089260
Solver: snopt. EXIT=0. INFORM=1.
SNOPT 7.2-5 NLP code
Optimality conditions satisfied
FuncEv 1 ConstrEv 7 ConJacEv 7 Iter 6 MinorIter 132
CPU time: 0.250000 sec. Elapsed time: 0.250000 sec.
end
Show result
disp(sprintf('Gravity estimated to %g',gopt));
Gravity estimated to 9.82655