Singular Arc Problem
Problem 3: Miser3 manual
Contents
Problem Formulation
Find u(t) over t in [0; tf ] to minimize

subject to:





![$$ x(0) = [\frac{pi}{2} \ 4 \ 0] $$](xsingularArc_eq71688.png)
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t toms tf p = tomPhase('p', t, 0, tf, 60); setPhase(p); tomStates x1 x2 x3 tomControls u % Initial guess x0 = {tf == 20 icollocate({ x1 == pi/2+pi/2*t/tf x2 == 4-4*t/tf; x3 == 0}) collocate(u == 0)}; % Box constraints cbox = {2 <= tf <= 1000 -2 <= collocate(u) <= 2}; % Boundary constraints cbnd = {initial({x1 == pi/2; x2 == 4; x3 == 0}) final({x2 == 0; x3 == 0})}; % ODEs and path constraints ceq = collocate({dot(x1) == u dot(x2) == cos(x1); dot(x3) == sin(x1)}); % Objective objective = tf;
Solve the problem
options = struct;
options.name = 'Singular Arc';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
x1 = subs(collocate(x1),solution);
x2 = subs(collocate(x2),solution);
x3 = subs(collocate(x3),solution);
u = subs(collocate(u),solution);
Problem type appears to be: lpcon
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05
=====================================================================================
Problem: --- 1: Singular Arc f_k 4.321198529553176300
sum(|constr|) 0.000000875552660889
f(x_k) + sum(|constr|) 4.321199405105836900
f(x_0) 20.000000000000000000
Solver: snopt. EXIT=0. INFORM=1.
SNOPT 7.2-5 NLP code
Optimality conditions satisfied
FuncEv 1 ConstrEv 60 ConJacEv 60 Iter 56 MinorIter 297
CPU time: 0.906250 sec. Elapsed time: 0.922000 sec.
Plot result
subplot(2,1,1) plot(t,x1,'*-',t,x2,'*-',t,x3,'*-'); legend('x1','x2','x3'); title('Singular Arc state variables'); subplot(2,1,2) plot(t,u,'+-'); legend('u'); title('Singular Arc control');