Singular CSTR
ITERATIVE DYNAMIC PROGRAMMING, REIN LUUS
10.4 Nonlinear two-stage CSTR problem
CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics
Contents
Problem Formulation
Find u over t in [0; tF ] to minimize:
(the state variables are moved to bounds)
subject to:
The initial condition are:
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t tf p = tomPhase('p', t, 0, tf, 30); setPhase(p) tomStates x1 x2 x3 x4 tomControls u1 u2 % Initial guess x0 = {tf == 0.3 icollocate({x1 == 0.1962; x2 == -0.0372 x3 == 0.0946; x4 == 0}) collocate({u1 == 0; u2 == 0})}; % Box constraints cbox = {0.1 <= tf <= 100 -1 <= collocate(u1) <= 1 -1 <= collocate(u2) <= 1}; % Boundary constraints cbnd = {initial({x1 == 0.1962; x2 == -0.0372 x3 == 0.0946; x4 == 0}) final({x1 == 0; x2 == 0 x3 == 0; x4 == 0})}; % ODEs and path constraints g1 = 1.5e7*(0.5251-x1).*exp(-10./(x2+0.6932)) ... - 1.5e10*(0.4748+x1).*exp(-15./(x2+0.6932)) - 1.4280; g2 = 1.5e7*(0.4236-x2).*exp(-10./(x4+0.6560)) ... - 1.5e10*(0.5764+x3).*exp(-15./(x4+0.6560)) - 0.5086; ceq = collocate({ dot(x1) == -3*x1+g1 dot(x2) == -11.1558*x2+g1-8.1558*(x2+0.1592).*u1 dot(x3) == 1.5*(0.5*x1-x3)+g2 dot(x4) == 0.75*x2-4.9385*x4+g2-3.4385*(x4+0.122).*u2}); % Objective objective = tf;
Solve the problem
options = struct;
options.name = 'Singular CSTR';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
x1 = subs(collocate(x1),solution);
x2 = subs(collocate(x2),solution);
x3 = subs(collocate(x3),solution);
x4 = subs(collocate(x4),solution);
u1 = subs(collocate(u1),solution);
u2 = subs(collocate(u2),solution);
Problem type appears to be: lpcon ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: --- 1: Singular CSTR f_k 0.324402684069356020 sum(|constr|) 0.000000010809182049 f(x_k) + sum(|constr|) 0.324402694878538070 f(x_0) 0.299999999999999990 Solver: snopt. EXIT=0. INFORM=1. SNOPT 7.2-5 NLP code Optimality conditions satisfied FuncEv 1 ConstrEv 75 ConJacEv 75 Iter 42 MinorIter 478 CPU time: 0.546875 sec. Elapsed time: 0.562000 sec.
Plot result
subplot(2,1,1) plot(t,x1,'*-',t,x2,'*-',t,x3,'*-',t,x4,'*-'); legend('x1','x2','x3','x4'); title('Singular CSTR state variables'); subplot(2,1,2) plot(t,u1,'+-',t,u2,'+-'); legend('u1','u2'); title('Singular CSTR control');