Singular Control 5
ITERATIVE DYNAMIC PROGRAMMING, REIN LUUS
10.3 Yeo's singular control problem
CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics
Contents
Problem Formulation
Find u over t in [0; 1 ] to minimize:

subject to:





The initial condition are:
![$$ x(0) = [0 \ -1 \ -sqrt(5) \ 0 \ 0] $$](xsingularControl5_eq82761.png)

The state x4 is implemented as a cost directly. x4 in the implementation is x5. u has a low limit of 9 in the code.
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t p = tomPhase('p', t, 0, 1, 80); setPhase(p) tomStates x1 x2 x3 x4 tomControls u % Initial guess x0 = {icollocate({x1 == 0; x2 == -1 x3 == -sqrt(5); x4 == 0}) collocate(u == 3)}; % Box constraints cbox = {0 <= collocate(u) <= 10}; % Boundary constraints cbnd = initial({x1 == 0; x2 == -1 x3 == -sqrt(5); x4 == 0}); % ODEs and path constraints ceq = collocate({dot(x1) == x2 dot(x2) == -x3.*u + 16*x4 - 8 dot(x3) == u; dot(x4) == 1}); % Objective objective = integrate(x1.^2 + x2.^2 + ... 0.0005*(x2+16*x4-8-0.1*x3.*u.^2).^2);
Solve the problem
options = struct;
options.name = 'Singular Control 5';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
u = subs(collocate(u),solution);
Problem type appears to be: con
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05
=====================================================================================
Problem: --- 1: Singular Control 5 f_k 0.119253718195990290
sum(|constr|) 0.000000404768612994
f(x_k) + sum(|constr|) 0.119254122964603280
f(x_0) 1.024412849382205600
Solver: snopt. EXIT=0. INFORM=1.
SNOPT 7.2-5 NLP code
Optimality conditions satisfied
FuncEv 105 GradEv 103 ConstrEv 103 ConJacEv 103 Iter 92 MinorIter 699
CPU time: 2.875000 sec. Elapsed time: 2.890000 sec.
Plot result
figure(1) plot(t,u,'+-'); legend('u'); title('Singular Control 5 control');