Temperature Control
Optimal Control CY3H2, Lecture notes by Victor M. Becerra, School of Systems Engineering, University of Reading
Heating a room using the least possible energy.
Contents
Problem Description
Find u over t in [0; 1] to minimize:
subject to:
% Copyright (c) 2009-2009 by Tomlab Optimization Inc.
Problem setup
toms t p = tomPhase('p', t, 0, 1, 20); setPhase(p); tomStates x tomControls u % Initial guess x0 = {icollocate(x == 10*t) collocate(u == 1)}; % Box constraints cbox = collocate(0 <= u); % Boundary constraints cbnd = {initial(x == 0) final(x == 10)}; % ODEs and path constraints ceq = collocate(dot(x) == -2*x+u); % Objective objective = 0.5*integrate(u^2);
Solve the problem
options = struct;
options.name = 'Temperature Control';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
x = subs(collocate(x),solution);
u = subs(collocate(u),solution);
Problem type appears to be: qp ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: 1: Temperature Control f_k 203.731472072763980000 sum(|constr|) 0.000000000046672914 f(x_k) + sum(|constr|) 203.731472072810650000 f(x_0) 0.000000000000000000 Solver: CPLEX. EXIT=0. INFORM=1. CPLEX Barrier QP solver Optimal solution found FuncEv 9 GradEv 9 ConstrEv 9 Iter 9
Plot result
figure(1); subplot(2,1,1) plot(t,x,'*-'); legend('Temperature'); subplot(2,1,2) plot(t,u,'*-'); legend('Energy');