Time Delay 1
ITERATIVE DYNAMIC PROGRAMMING, REIN LUUS
8.3.1 Example 1
CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics
Linear time-delay system used for optimal control studies by Chan and Perkins
Contents
Problem Formulation
Find u over t in [0; 5 ] to minimize
subject to:
The initial condition are:
% Copyright (c) 2007-2008 by Tomlab Optimization Inc.
Problem setup
toms t p1 = tomPhase('p1', t, 0, 5, 50); setPhase(p1); tomStates x1 x2 x3 tomControls u % Initial guess x0 = {icollocate({x1 == 1 x2 == 1; x3 == 0}) collocate(u == 0)}; % Boundary constraints cbnd = initial({x1 == 1; x2 == 1; x3 == 0}); % Expressions for x1(t-tau) and x2(t-tau) tau = 0.25; x1delayed = ifThenElse(t<tau, 1, subs(x1,t,t-tau)); x2delayed = ifThenElse(t<tau, 1, subs(x2,t,t-tau)); % ODEs and path constraints ceq = collocate({dot(x1) == x2 dot(x2) == -10*x1 - 5*x2 - 2*x1delayed - x2delayed + u dot(x3) == 0.5*(10*x1.^2+x2.^2+u.^2)}); % Objective objective = final(x3);
Solve the problem
options = struct;
options.name = 'Time Delay 1';
solution = ezsolve(objective, {cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
u = subs(collocate(u),solution);
Problem type appears to be: lpcon ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: --- 1: Time Delay 1 f_k 2.525970855999299000 sum(|constr|) 0.000000181522724643 f(x_k) + sum(|constr|) 2.525971037522023900 f(x_0) 0.000000000000000000 Solver: snopt. EXIT=0. INFORM=1. SNOPT 7.2-5 NLP code Optimality conditions satisfied FuncEv 1 ConstrEv 2079 ConJacEv 2079 Iter 555 MinorIter 736 CPU time: 26.968750 sec. Elapsed time: 27.016000 sec.
Plot result
figure(1) plot(t,u,'+-'); legend('u'); title('Time Delay 1 control');